Skip to content

Amitifadine Synthesis Essay

1. Wencel-Delord J, Glorius F. C–H bond activation enables the rapid construction and late stage diversification of functional molecules. Nature Chem. 2013;5:369–375.[PubMed]

2. McMurray L, O'Hara F, Gaunt MJ. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalization. Chem. Sov. Rev. 2011;40:1885–1898.[PubMed]

3. Yamaguchi J, Yamaguchi AD, Itami K. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 2012;51:8960–9009.[PubMed]

4. Godula K, Sames D. C-H bond functionalization in complex organic synthesis. Science. 2006;312:67–72.[PubMed]

5. Taylor RD, MacCoss M, Lawson ADG. Rings in drugs. J. Med. Chem. 2014;57:5845–5859.[PubMed]

6. Asensio G, Gonzalez-Nunez ME, Bernardini CB, Mello R, Adam W. Regioselective oxyfunctionalization of unactivated tertiary and secondary C–H bonds of alkylamines by methyl(trifluomethyl)dioxirane in acid medium. J. Am. Chem. Soc. 1993;115:7250–7253.

7. Affron DP, Davis OA, Bull JA. Regio- and stereospecific synthesis of C-3 functionalized proline derivatives by palladium catalyzed directed C(sp3)–H arylation. Org. Lett. 2014;16:4956–4959.[PubMed]

8. Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 2010;110:1147–1169.[PMC free article][PubMed]

9. Chen X, Engle KM, Wang D, Yu J-Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 2009;48:5094–5115.[PMC free article][PubMed]

10. Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BUW. Direct α-functionalization of saturated cyclic amine. Chem. Eur. J. 2012;18:10092–10142.[PubMed]

11. Pastine SJ, Gribkov DV, Sames D. sp3 C−H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 2006;128:14220–14221.[PubMed]

12. He J, Hamann LG, Davies HML, Beckwith REJ. Late-stage C-H functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nature Commun. 2015;6[PubMed]

13. Shi L, Xia W. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev. 2012;41:7687–7697.[PubMed]

14. Spangler JE, Kobayashi Y, Verma P, Wang D-H, Yu J-Q. α-Arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)−H coupling. J. Am. Chem. Soc. 2015;137:18876–18879.[PMC free article][PubMed]

15. McNally A, Haffemayer B, Collins BL, Gaunt MJ. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature. 2014;510:129–133.[PubMed]

16. Lee M, Sanford MS. Platinum-catalyzed terminal-selective C(sp3)–H oxidation of aliphatic amines. J. Am. Chem. Soc. 2015;137:12796–12799.[PMC free article][PubMed]

17. Bercaw JE, et al. Robotic lepidoptery: structural characterization of (mostly) unexpected palladium complexes obtained from high-throughput catalyst screening. Organometallics. 2009;28:5017–5024.

18. Cui W, Chen S, Wu J-Q, Zhao X, Hu W, Wang H. Palladium-catalyzed remote C(sp3)–H arylation of 3-pinanamine. Org. Lett. 2014;16:4288–4291.[PubMed]

19. Giri R, Chen X, Yu J-Q. Palladium-catalyzed asymmetric iodination of unactivated C-H bonds under mild conditions. Angew. Chem. Int. Ed. 2005;44:2112–2115.[PubMed]

20. Rouquet G, Chatani N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 2013;52:11726–11743.[PubMed]

21. Wasa M, et al. Ligand-enabled methylene C(sp3)–H bond activation with a Pd(II) catalyst. J. Am. Chem. Soc. 2012;134:18570–18572.[PMC free article][PubMed]

22. He J, et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science. 2014;343:1216–1220.[PMC free article][PubMed]

23. Zaitsev VG, Shabashov D, Daugulis O. Highly regioselective arylation of sp3 C−H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 2005;127:13154–13155.[PubMed]

24. Nadres ET, Santos GIF, Shabashov S, Daugulis O. Scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of sp2 and sp3 C–H Bonds. J. Org. Chem. 2013;78:9689–9714.[PMC free article][PubMed]

25. Lafrance M, Fagnou K. Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design. J. Am. Chem. Soc. 2006;128:16496–16497.[PubMed]

26. Beer B, et al. DOV 216,303, a “Triple” reuptake inhibitor: safety, tolerability, and pharmacokinetic profile. J. Clin. Pharmacol. 2004;44:1360–1367.[PubMed]

27. Epestein JW, et al. 1-Aryl-3-azabicyclo[3.1.0]hexanes, a new series of nonnarcotic analgesic agents. J. Med. Chem. 1981;24:481–490.[PubMed]

28. Juaristi E. Conformational Behavior of Six-Membered Rings. VCH; New York: 1995.

29. Hirsch JA. Table of conformational energies – 1967. Topics in Stereochemistry. 1967;1:199–222.

30. Singer RA, McKinley JD, Barbe G, Farlow RA. Preparation of 1,5-methano-2,3,4,5- tetrahydro-1H-3-benzazepine via Pd-catalyzed cyclization. Org. Lett. 2004;6:2357–2360.[PubMed]

Fabrizio Micheli*†, Paolo Cavanni†, Roberto Arban†, Roberto Benedetti†, Barbara Bertani†, Michela Bettati†, Letizia Bettelini†, Giorgio Bonanomi†, Simone Braggio†, Anna Checchia†, Silvia Davalli‡, Romano Di Fabio†, Elettra Fazzolari†, Stefano Fontana†, Carla Marchioro‡, Doug Minick‡§, Michele Negri†, Beatrice Oliosi‡, Kevin D. Read∥, Ilaria Sartori†, Giovanna Tedesco‡, Luca Tarsi†, Silvia Terreni†, Filippo Visentini‡, Alessandro Zocchi† and Laura Zonzini†

Neurosciences Centre of Excellence for Drug Discovery

Molecular Discovery Research

GlaxoSmithKline Medicine Research Centre, Via Fleming 4, 37135 Verona, Italy

§ Molecular Discovery Research, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, North Carolina

Biological Chemistry and Drug Discovery, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

J. Med. Chem., 2010, 53 (6), pp 2534–2551

DOI: 10.1021/jm901818u

Publication Date (Web): February 19, 2010

Copyright © 2010 American Chemical Society

*To whom correspondence should be addressed. Phone: +39-045-8218515. Fax: +39-045-8118196. E-mail: Fabrizio.E.Micheli@gsk.com.

Abstract

The discovery of new highly potent and selective triple reuptake inhibitors is reported. The new classes of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes are described together with detailed SAR. Appropriate decoration of the scaffolds was achieved with the help of a triple reuptake inhibitor pharmacophore model detailed here. Selected derivatives showed good oral bioavailability (>30%) and brain penetration (B/B > 4) in rats associated with high in vitro potency and selectivity at SERT, NET, and DAT. Among these compounds, microdialysis and in vivo experiments confirm that derivative 15 has an appropriate developability profile to be considered for further progression.

An example of TRUI minimal pharmacophore construction. This material is available free of charge via the Internet at http://pubs.acs.org.

View: ACS ActiveView PDF | PDF | PDF w/ Links | Full Text HTML